Saturday, September 14, 2024

 Introduction of Trigonometry

- Advertisement -spot_imgspot_img
- Advertisement -spot_img

The word “trigonometry” is derived from the Greek words “tri” (meaning three), “gon” (meaning sides), and “metron” (meaning measure).  

Key Concepts:

  • Trigonometric Ratios: These are ratios of the sides of a right-angled triangle with respect to its acute angles. 
  • Trigonometric Identities: These are equations involving trigonometric ratios that hold true for all values of the angle involved. 
  • Trigonometric Tables: These tables provide the values of trigonometric ratios for different angles.

Applications of Trigonometry:

Trigonometry has wide-ranging applications in various fields, including:

  • Surveying
  • Navigation
  • Engineering
  • Physics
  • Astronomy

In essence, trigonometry provides a mathematical framework for understanding and analyzing geometric relationships, especially in triangles. 

Exercise 8.1

1. In ∆ABC right angled at B, AB = 24 cm, BC = 7 cm. Determine:

(i) sin A, cos A

(ii) sin C, cos C

Ans : 

Step 1: Find the hypotenuse AC Using the Pythagorean theorem: AC² = AB² + BC² AC² = 24² + 7² AC² = 576 + 49 AC² = 625 AC = 25 cm

Step 2: Find the trigonometric ratios (i) sin A, cos A

  • sin A = opposite side / hypotenuse = BC / AC = 7/25
  • cos A = adjacent side / hypotenuse = AB / AC = 24/25

(ii) sin C, cos C

  • sin C = opposite side / hypotenuse 
  • = AB / AC = 24/25
  • cos C = adjacent side / hypotenuse 
  • = BC / AC = 7/25

2. In given figure, find tan P – cot R.

Ans :

3. If sin A = 3/4 , calculate cos A and tan A.

Ans : 

Using the Pythagorean Identity:

  • sin²A + cos²A = 1

Substituting the given value of sin A:

  • (3/4)² + cos²A = 1
  • 9/16 + cos²A = 1
  • cos²A = 1 – 9/16
  • cos²A = 7/16
  • cos A = ±√(7/16)

Since we are dealing with an angle in a right-angled triangle, cosine is positive. Therefore, cos A = √7/4

Finding tan A:

  • tan A = sin A / cos A = (3/4) / (√7/4) = 3/√7

4. Given 15 cot A = 8, find sin A and sec A.

Ans : 

Given: 15 cot A = 8 Therefore, cot A = 8/15

We know that:

  • cot A = base/perpendicular = B/P
  • So, let base (B) = 8k and perpendicular (P) = 15k, where k is a positive constant.

Using Pythagoras theorem:

  • Hypotenuse (H)² = Base² + Perpendicular²
  • H² = (8k)² + (15k)²
  • H² = 64k² + 225k²
  • H² = 289k²
  • H = 17k

Find sin A and sec A:

  • sin A = perpendicular/hypotenuse = P/H = 15k/17k = 15/17
  • sec A = hypotenuse/base = H/B = 17k/8k = 17/8

5. Given sec θ = 13/12 , calculate all other trigonometric ratios.

Ans : 

Given: sec θ = 13/12

We know that:

  • sec θ = hypotenuse / base

Therefore, hypotenuse = 13 and base = 12.

Using Pythagoras theorem to find the perpendicular:

  • hypotenuse² = perpendicular² + base²
  • 13² = perpendicular² + 12²
  • perpendicular² = 169 – 144 = 25
  • perpendicular = 5

Now, we can find the other trigonometric ratios:

  • sin θ = perpendicular / hypotenuse 
  • = 5/13
  • cos θ = base / hypotenuse = 12/13
  • tan θ = perpendicular / base = 5/12
  • cot θ = base / perpendicular = 12/5
  • cosec θ = hypotenuse / perpendicular = 13/5

6. If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

Ans : 

Consider a right-angled triangle ABC with ∠C = 90°.

  • cos A = BC/AC (adjacent side/hypotenuse)
  • cos B = AC/AB (adjacent side/hypotenuse)

Given that cos A = cos B, we have:

  • BC/AC = AC/AB

Cross-multiplying, we get:

  • BC * AB = AC * AC
  • BC * AB = AC²

Now, consider the same triangle ABC.

  • By the Pythagorean theorem, we have:
    • AB² = AC² + BC²

Substitute BC * AB for AC² from the previous equation:

  • AB² = BC * AB + BC²
  • AB² – BC * AB – BC² = 0
  • (AB – BC)(AB + BC) = 0

Since AB and BC are lengths of sides of a triangle, they cannot be negative. Therefore, AB + BC ≠ 0.

Hence, AB – BC = 0

  • AB = BC

In triangle ABC, since AB = BC, the angles opposite to these equal sides are also equal.

Therefore, ∠A = ∠B.

7. If cot θ = 7/8, evaluate:

(i) (1+sinθ)(1−sinθ)/(1+cosθ)(1−cosθ)

(ii) cot²θ

Ans : 

(i) Evaluating (1+sinθ)(1-sinθ) / (1+cosθ)(1-cosθ)

Using the identity (a+b)(a-b) = a²-b², we get:

  • Numerator = (1+sinθ)(1-sinθ) = 1 – sin²θ
  • Denominator = (1+cosθ)(1-cosθ) = 1 – cos²θ

Using the Pythagorean identity sin²θ + cos²θ = 1, we get:

  • Numerator = cos²θ
  • Denominator = sin²θ

Therefore, the expression becomes:

  • cos²θ / sin²θ = (cosθ/sinθ)²

Since cot θ = cosθ/sinθ, we have:

  • (cosθ/sinθ)² = cot²θ

Now, we know cot θ = 7/8, so cot²θ = (7/8)² = 49/64.

Therefore, the value of the expression is 49/64.

8. If 3 cot A = 4, check whether 1−tan2A/1+tan2A = cos² A – sin² A or not.

Ans : 

Given: 3 cot A = 4

Step 1: Find tan A

  • cot A = 4/3
  • tan A = 1/cot A = 3/4

Step 2: Evaluate the Left Hand Side (LHS)

  • LHS = (1 – tan²A) / (1 + tan²A) = (1 – (3/4)²) / (1 + (3/4)²) = (1 – 9/16) / (1 + 9/16) = (7/16) / (25/16) = 7/25

Step 3: Evaluate the Right Hand Side (RHS)

  • RHS = cos²A – sin²A

To find cos A and sin A, we can use the Pythagorean identity:

  • tan²A + 1 = sec²A
  • (3/4)² + 1 = sec²A
  • sec²A = 25/16
  • sec A = 5/4

Now, cos A = 1/sec A = 4/5 And sin A = √(1 – cos²A) = √(1 – (16/25)) = 3/5

Therefore, RHS = (4/5)² – (3/5)² = 16/25 – 9/25 = 7/25

Since LHS = RHS, the given equation is true.

Hence, (1 – tan²A) / (1 + tan²A) = cos²A – sin²A.

9. In triangle ABC, right angled at B, if tan A = 1/√3, find the value of:

(i) sin A cos C + cos A sin C

(ii) cos A cos C – sin A sin C

Ans : 

Step 1: Find sin A and cos A

Given tan A = 1/√3

We know that tan A = perpendicular/base = BC/AB

So, let BC = k and AB = √3k

Using Pythagoras theorem, AC = 2k

Therefore, sin A = BC/AC = k/2k = 1/2

And cos A = AB/AC = √3k/2k = √3/2

Step 2: Find the values of sin C and cos C

Since ∠B = 90°, ∠A + ∠C = 90°

So, if tan A = 1/√3, then ∠A = 30°

Therefore, ∠C = 60°

sin C = sin 60° = √3/2

cos C = cos 60° = 1/2

Step 3: Evaluate the expressions

(i) sin A cos C + cos A sin C = (1/2)(1/2) + (√3/2)(√3/2) = 1/4 + 3/4 = 1

(ii) cos A cos C – sin A sin C = (√3/2)(1/2) – (1/2)(√3/2) = 0

10. In ΔPQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Ans : 

Step 1: Find the lengths of PR and QR Let QR = x cm. Then, PR = (25 – x) cm.

Using the Pythagorean theorem in right-angled triangle PQR:

  • PQ² + QR² = PR²
  • 5² + x² = (25 – x)²
  • 25 + x² = 625 – 50x + x²
  • 50x = 600
  • x = 12

So, QR = 12 cm and PR = 25 – 12 = 13 cm.

Step 2: Find the trigonometric ratios

  • sin P = opposite side / hypotenuse = QR/PR = 12/13
  • cos P = adjacent side / hypotenuse = PQ/PR = 5/13
  • tan P = opposite side / adjacent side 
  • = QR/PQ = 12/5

11. State whether the following statements are true or false. Justify your answer.

(i) The value of tan A is always less than 1.

(ii) sec A = 12/5 for some value of angle A.

(iii) cos A is the abbreviation used for the cosecant of angle A.

(iv) cot A is the product of cot and A.

(v) sin θ = 4/3 for some angle.

Ans : 

(i) False.

  • The value of tan A can be less than, greater than, or equal to 1. It depends on the values of the opposite side and adjacent side of the right-angled triangle.

(ii) True.

  • sec A is the reciprocal of cos A. Since cos A can take values between -1 and 1 (excluding 0), sec A can be greater than 1. Hence, sec A = 12/5 is possible for some angle A.

(iii) False.

  • cos A is the abbreviation for cosine of angle A, while cosec A is the abbreviation for cosecant of angle A.

(iv) False.

  • cot A is the cotangent of angle A, not the product of cot and A.

(v) False.

  • The value of sin θ always lies between -1 and 1. Since 4/3 is greater than 1, it cannot be the value of sin θ for any angle θ.

Exercise 8.2

1. Evaluate the following:

NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.2 Q1

Ans : 

Expression (i):

sin 60° cos 30° + sin 30° cos 60°

= (√3/2 * √3/2) + (1/2 * 1/2)

= 3/4 + 1/4

= 1

Expression (ii):

2 tan² 45° + cos² 30° – sin² 60°

= 2 * (1)² + (√3/2)² – (√3/2)²

= 2 + 3/4 – 3/4

= 2

Expression (iii):

cos 45° / (sec 30° + cosec 30°)

= (1/√2) / (2/√3 + 2)

= (1/√2) / (2(1 + √3)/√3)

= √3 / (2√2 * (1 + √3))

Rationalizing the denominator:

= √3 / (2√2 * (1 + √3)) * (√2 – √6) / (√2 – √6)

= (√6 – √18) / (4 * (1 – 3))

= (√6 – 3√2) / (-8)

= (3√2 – √6) / 8

Expression (iv):

(sin 30° + tan 45° – cosec 60°) / (sec 30° + cos 60° + cot 45°)

= (1/2 + 1 – 2) / (2/√3 + 1/2 + 1)

= -1/2 / (2/√3 + 3/2)

= -1/2 / ((4 + 3√3)/2√3)

= -√3 / (4 + 3√3)

Rationalizing the denominator:

= -√3 / (4 + 3√3) * (4 – 3√3) / (4 – 3√3)

= (-4√3 + 9) / (16 – 27)

= (9 – 4√3) / (-11)

Expression (v):

(5 cos² 60° + 4 sec² 30° – tan² 45°) / (sin² 30° + cos² 30°)

= (5 * (1/2)² + 4 * (2/√3)² – (1)²) / ((1/2)² + (√3/2)²)

= (5/4 + 16/3 – 1) / (1/4 + 3/4)

= (15 + 64 – 12) / 12

= 67 / 12

2. Choose the correct option and justify your choice:

NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.2 Q2

Ans : 

3. If tan (A + B) = √3 and tan (A – B) = 1/√3; 0° < A + B ≤ 90°; A > B, find A and B.

Ans : 

Step 1: Identify the angles from the given tangent values

We know that:

  • tan 60° = √3
  • tan 30° = 1/√3

Therefore,

  • tan(A+B) = tan 60°
  • tan(A-B) = tan 30°

Step 2: Equate the angles From the above equations, we can deduce that:

  • A + B = 60° (Equation 1)
  • A – B = 30° (Equation 2)

Step 3: Solve the equations Adding equations (1) and (2):

  • 2A = 90°
  • A = 45°

Substituting A = 45° in equation (1):

  • 45° + B = 60°
  • B = 15°

4. State whether the following statements are true or false. Justify your answer.

(i) sin (A + B) = sin A + sin B.

(ii) The value of sin θ increases as θ increases.

(iii) The value of cos θ increases as θ increases.

(iv) sin θ = cos θ for all values of θ.

(v) cot A is not defined for A = 0°.

Ans :

(i) False. 

This is not a trigonometric identity. The correct expansion for sin(A + B) involves both sine and cosine terms.

(ii) True. 

The value of sin θ increases as θ increases from 0° to 90°. However, it decreases as θ increases from 90° to 180°.

(iii) False. 

The value of cos θ decreases as θ increases from 0° to 90°.

(iv) False. 

This equality holds true only for θ = 45°. In general, sin θ and cos θ are different functions with different values for most angles.

(v) True. 

cot A = cos A / sin A. Since sin 0° = 0, cot 0° becomes undefined.

Exercise 8.3 

1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Ans : 

1. Expressing sin A in terms of cot A:

We know that:

  • cot A 
  • = cos A / sin A
  • cot²A = cos²A / sin²A

Using the Pythagorean identity, sin²A + cos²A = 1, we can write:

  • cot²A = (1 – sin²A) / sin²A
  • cot²A * sin²A = 1 – sin²A
  • sin²A (1 + cot²A) = 1
  • sin²A = 1 / (1 + cot²A)
  • sin A = 1 / √(1 + cot²A)

2. Expressing sec A in terms of cot A:

We know that:

  • sec²A = 1 + tan²A

Substituting tan A = 1/cot A:

  • sec²A = 1 + (1/cot²A)
  • sec²A = (cot²A + 1) / cot²A
  • sec A = √(cot²A + 1) / cot A

Therefore, sec A = √(cot²A + 1) / cot A

3. Expressing tan A in terms of cot A:

We know that:

  • tan A = 1 / cot A

Therefore, tan A = 1 / cot A

2. Write all the other trigonometric ratios of ∠A in terms of sec A.

Ans : 

Given: sec A = 1/cos A

1. Finding sin A:

  • Using the Pythagorean identity: sin²A + cos²A = 1
  • sin²A = 1 – cos²A
  • sin²A = 1 – (1/sec A)²
  • sin A = √(1 – 1/sec²A)

2. Finding tan A:

  • tan A 
  • = sin A / cos A
  • tan A = √(1 – 1/sec²A) / (1/sec A)
  • tan A = sec A * √(1 – 1/sec²A)

3. Finding cot A:

  • cot A = 1 / tan A
  • cot A = 1 / (sec A * √(1 – 1/sec²A))
  • cot A = √(1 – 1/sec²A) / sec A

4. Finding cosec A:

  • cosec A = 1 / sin A
  • cosec A = 1 / √(1 – 1/sec²A)

3. Choose the correct option. Justify your choice.

(i) 9 sec² A – 9 tan² A = ……

(A) 1

(B) 9

(C) 8

(D) 0

(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) = ………..
(A) 0
(B) 1
(C) 2
(D) -1

(iii) (sec A + tan A) (1 – sin A) = ………….
(A) sec A
(B) sin A
(C) cosec A
(D) cos A

(iv) 1+tan2A/1+cot2A = ………..

(A) sec² A

(B) -1

(C) cot² A

(D) tan² A

Ans : 

4. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4 Q5

Ans : 

- Advertisement -spot_imgspot_img
Latest news
- Advertisement -spot_img
Related news
- Advertisement -spot_imgspot_img