Saturday, December 21, 2024

Algebraic Expression

- Advertisement -spot_imgspot_img
- Advertisement -spot_img

Algebraic expressions are mathematical phrases that combine numbers, variables, and operations (like addition, subtraction, multiplication, and division).

Key concepts:

  • Variables: Letters or symbols that represent unknown values (e.g., x, y, a, b).
  • Constants: Fixed numerical values (e.g., 2, -5, 7).
  • Terms: Parts of an algebraic expression separated by addition or subtraction (e.g., 3x, -2y, 5).
  • Coefficients: The numerical factor of a term (e.g., 3 in 3x, -2 in -2y).
  • Like terms: Terms with the same variable raised to the same power (e.g., 2x and 5x).
  • Unlike terms: Terms with different variables or the same variable raised to different powers (e.g., 2x and 3y, 4x² and 2x).

Operations on algebraic expressions:

  • Addition and subtraction: Combine like terms.
  • Multiplication: Multiply coefficients and variables according to the rules of exponents.
  • Division: Divide coefficients and simplify variables using exponent rules.

Evaluating algebraic expressions:

  • Substitute given values for variables and simplify the expression using arithmetic operations.

Example:

  • The expression 3x + 2y – 5 has three terms: 3x, 2y, and -5.
  • The coefficients are 3 and 2.
  • If x = 2 and y = 3, the value of the expression is 3(2) + 2(3) – 5 = 7.

By understanding these concepts, you can build a strong foundation for further algebraic studies.

Exercise 10.1

1. Get the algebraic expressions in the following cases using variables, constants and arithmetic operations:

(i) Subtraction of z from y.

(ii) One half of the sum of numbers x and y.

(iii) The number z multiplied by itself.

(iv) One-fourth of the product of numbers p and q.

(v) Numbers x and y both squared and added.

(vi) Number 5 added to three times the product of number m and n.

(vii) Product of numbers y and 2 subtracted from 10.

(viii) Sum of numbers a and b subtracted from their product.

Ans : 

(i) 

Algebraic expression: y – z

(ii) 

Algebraic expression: (x + y)/2

(iii) 

Algebraic expression: z * z or z²

(iv) 

Algebraic expression: (p * q) / 4

(v) 

Algebraic expression: x² + y²

(vi) 

Algebraic expression: 3mn + 5

(vii) 

Algebraic expression: 10 – 2y

(viii) 

Algebraic expression: ab – (a + b)

2.

(i) Identify the terms and their factors in the following expressions show the terms and factors by tree diagrams.

(a) x – 3

(b) 1 + x + x2

(c) y – y3

(d) 5xy2 + 7x2y

(e) -ab + 2b2 – 3a2

Ans : 

(ii) Identify terms and factors in the expression

given below:

(a) -4x + 5

(b) -4x + 5y

(c) 5y + 3y2

(d) xy + 2x2y2

(e) pq + q

(f) 1.2ab – 2.4b + 3.6a

(g) ¾*x+1/4

(h) 0.1p2 + 0.2q2

Ans : 

Analyzing the Expressions

(a) -4x + 5

  • Terms: -4x, 5
  • Factors:
    • -4x: -4, x
    • 5: 5

(b) -4x + 5y

  • Terms: -4x, 5y
  • Factors:
    • -4x: -4, x
    • 5y: 5, y

(c) 5y + 3y²

  • Terms: 5y, 3y²
  • Factors:
    • 5y: 5, y
    • 3y²: 3, y, y

(d) xy + 2x²y²

  • Terms: xy, 2x²y²
  • Factors:
    • xy: x, y
    • 2x²y²: 2, x, x, y, y

(e) pq + q

  • Terms: pq, q
  • Factors:
    • pq: p, q
    • q: q

(f) 1.2ab – 2.4b + 3.6a

  • Terms: 1.2ab, -2.4b, 3.6a
  • Factors:
    • 1.2ab: 1.2, a, b
    • -2.4b: -2.4, b
    • 3.6a: 3.6, a

(g) 3/4x + 1/4

  • Terms: 3/4x, 1/4
  • Factors:
    • 3/4x: 3/4, x
    • 1/4: 1/4

(h) 0.1p² + 0.2q²

  • Terms: 0.1p², 0.2q²
  • Factors:
    • 0.1p²: 0.1, p, p
    • 0.2q²: 0.2, q, q

3. Identify the numerical coefficients of terms (other than constants) in the following:

(i) 5 – 3t2

(ii) 1 + t + t2 + t3

(iii) x + 2xy + 3y

(iv) 100m + 1000n

(v) -p2q2 + 7pq

(vi) 1.2 a + 0.86

(vii) 3.14r2

(viii) 2(l + b)

(ix) 0.1y + 0.01y2

Ans : 

i) 5 – 3t²

Numerical coefficient: -3

ii) 1 + t + t² + t³

Numerical coefficients: 1, 1, 1

iii) x + 2xy + 3y

Numerical coefficients: 2, 3

iv) 100m + 1000n

Numerical coefficients: 100, 1000

v) -p²q² + 7pq

Numerical coefficients: -1, 7

vi) 1.2a + 0.86

Numerical coefficient: 1.2

vii) 3.14r²

Numerical coefficient: 3.14

viii) 2(l + b)

Numerical coefficient: 2 (when expanded, becomes 2l + 2b)

ix) 0.1y + 0.01y²

Numerical coefficients: 0.1, 0.01

4 (a) Identify terms which contain x and give the

coefficient of x.

(i) y2x + y

(ii) 13y2 – 8yx

(iii) x + y + 2

(iv) 5 + z + zx

(v) 1 + x + xy

(vi) 12 xy2 + 25

(vii) 7x + xy2

Ans : 

Analyzing the Expressions

(i) y²x + y

  • Term containing x: y²x
  • Coefficient of x: y²

(ii) 13y² – 8yx

  • Term containing x: -8yx
  • Coefficient of x: -8y

(iii) x + y + 2

  • Term containing x: x
  • Coefficient of x: 1 (implied)

(iv) 5 + z + zx

  • Terms containing x: x, zx
  • Coefficient of x in x: 1
  • Coefficient of x in zx: z

(v) 1 + x + xy

  • Terms containing x: x, xy
  • Coefficient of x in x: 1
  • Coefficient of x in xy: y

(vi) 12xy² + 25

  • Term containing x: 12xy²
  • Coefficient of x: 12y²

(vii) 7x + xy²

  • Terms containing x: 7x, xy²
  • Coefficient of x in 7x: 7
  • Coefficient of x in xy²: y²

(b) Identify terms which contain y2 and give the coefficients of y2.

(i) 8 – xy2

(ii) 5y2 + 7x

(iii) 2x2y – 15xy2 + 7y2

Ans : 

Analyzing the Expressions

(i) 8 – xy²

  • Term containing y²: -xy²
  • Coefficient of y²: -x

(ii) 5y² + 7x

  • Term containing y²: 5y²
  • Coefficient of y²: 5

(iii) 2x²y – 15xy² + 7y²

  • Terms containing y²: -15xy², 7y²
  • Coefficient of y² in -15xy²: -15x
  • Coefficient of y² in 7y²: 7

5. Classify into monomials, binomials and trinomials:

(i) 4y – 7x

(ii) y2

(iii) x + y – xy

(iv) 100

(v) ab – a – b

(vi) 5 – 3t

(vii) 4p2q – 4pq2

(viii) 7mn

(ix) z2 – 3z + 8

(x) a2 + b2

(xi) z2 + z

(xii) 1 + x + x2

Ans : 

ExpressionType
(i) 4y – 7xBinomial
(ii) y²Monomial
(iii) x + y – xyTrinomial
(iv) 100Monomial
(v) ab – a – bTrinomial
(vi) 5 – 3tBinomial
(vii) 4p²q – 4pq²Binomial
(viii) 7mnMonomial
(ix) z² – 3z + 8Trinomial
(x) a² + b²Binomial
(xi) z² + zBinomial
(xii) 1 + x + x²Trinomial

6. State whether a given pair of terms is of like or unlike terms.

(i) 1, 100

(ii) -7x, 5/2*x

(iii) -29x, -29y

(iv) 14xy, 42yx

(v) 4m2p, 4mp2

(vi) 12xz, 12 x2y2

Ans : 

Analysis

(i) 1, 100

  • Both terms are constants, so they are like terms.

(ii) -7x, (5/2)x

  • Both terms have the same variable (x) with the same power (1), so they are like terms.

(iii) -29x, -29y

  • The terms have different variables (x and y), so they are unlike terms.

(iv) 14xy, 42yx

  • Both terms have the same variables (x and y) with the same powers, so they are like terms.

(v) 4m²p, 4mp²

  • The variables and their powers are different, so they are unlike terms.

(vi) 12xz, 12x²z²

  • The variables and their powers are different, so they are unlike terms.

7. Identify like terms in the following:

(a)-xy2, -4yx2, 8x2, 2xy2, 7y2, -11x2, -100x, -11yx, 20x2y, -6x2, y, 2xy, 3x

(b) 10pq, 7p, 8q, -p2q2, -7qp, -100q, -23, 12q2p2, -5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2

Ans : 

(a) -xy², -4yx², 8x², 2xy², 7y², -11x², -100x, -11yx, 20x²y, -6x², y, 2xy, 3x

  • Like terms with x²: 8x², -11x², -6x², 20x²y
  • Like terms with xy: -xy², 2xy², -11yx, 2xy
  • Like terms with x: -100x, 3x
  • Like terms with y²: 7y²
  • Like terms with y: y

(b) 10pq, 7p, 8q, -p²q², -7qp, -100q, -23, 12q²p², -5p², 41, 2405p, 78qp, 13p²q, qp², 701p²

  • Like terms with pq: 10pq, -7qp, 78qp
  • Like terms with p²q²: -p²q², 12q²p², 13p²q, qp²
  • Like terms with p²: -5p², 701p²
  • Like terms with p: 7p, 2405p
  • Like terms with q: 8q, -100q
  • Like terms with constants: -23, 41

Exercise 10.2

1. If m = 2, find the value of:

(i) m – 2

(ii) 3m – 5

(iii) 9 – 5m

(iv) 3m2 – 2m – 7

(v) 5m/2−4

Ans : 

Let’s substitute m = 2 into the expressions:

(i) m – 2

= 2 – 2 = 0

(ii) 3m – 5

= 3(2) – 5 = 6 – 5 = 1

(iii) 9 – 5m

= 9 – 5(2) = 9 – 10 = -1

(iv) 3m² – 2m – 7

= 3(2)² – 2(2) – 7 = 3(4) – 4 – 7 = 12 – 4 – 7 = 1

(v) (5m)/2 – 4

= (5 * 2) / 2 – 4 = 10 / 2 – 4 = 5 – 4 = 1

2. If p = -2, find the value of:

(i) 4p + 7

(ii) -3p2 + 4p + 7

(iii) -2p3 – 3p2 + 4p + 7

Ans : 

Substituting p = -2

(i) 4p + 7

= 4(-2) + 7 = -8 + 7 = -1

(ii) -3p² + 4p + 7

= -3(-2)² + 4(-2) + 7 = -3(4) – 8 + 7 = -12 – 8 + 7 = -13

(iii) -2p³ – 3p² + 4p + 7

= -2(-2)³ – 3(-2)² + 4(-2) + 7 = -2(-8) – 3(4) – 8 + 7 = 16 – 12 – 8 + 7 = 3

3. Find the value of the following expressions, when x = –1:

 (i) 2x – 7 (ii) – x + 2 (iii) x 2 + 2x + 1 (iv) 2x 2 – x – 2

Ans : 

(i) 2x – 7

= 2(-1) – 7 = -2 – 7 = -9

(ii) -x + 2

= -(-1) + 2 = 1 + 2 = 3

(iii) x² + 2x + 1

= (-1)² + 2(-1) + 1 = 1 – 2 + 1 = 0

4. If a = 2, b = -2, find the value of:

(i) a2 + b2

(ii) a2 + ab + b2

(iii) a2 – b2

Ans : 

Given:

  • a = 2
  • b = -2

Calculations:

(i) a² + b² = (2)² + (-2)² = 4 + 4 = 8

(ii) a² + ab + b² = (2)² + (2)(-2) + (-2)² = 4 – 4 + 4 = 4

(iii) a² – b² = (2)² – (-2)² = 4 – 4 = 0

5. When a = 0, b = -1, find the value of the given expressions:

(i) 2a + 2b

(ii) 2a2 + b2 + 1

(iii) 2a2b + 2ab2 + ab

(iv) a2 + ab + 2

Ans : 

Given:

  • a = 0
  • b = -1

Calculations:

(i) 2a + 2b = 2(0) + 2(-1) = 0 – 2 = -2

(ii) 2a² + b² + 1 = 2(0)² + (-1)² + 1 = 0 + 1 + 1 = 2

(iii) 2a²b + 2ab² + ab = 2(0)²(-1) + 2(0)(-1)² + (0)(-1) = 0 + 0 + 0 = 0

(iv) a² + ab + 2 = (0)² + (0)(-1) + 2 = 0 + 0 + 2 = 2

6. Simplify the expressions and find the value if x is equal to 2.

(i) x + 7 +4(x – 5)

(ii) 3(x + 2) + 5x – 7

(iii) 6x + 5(x – 2)

(iv) 4(2x – 1) + 3x + 11

Ans : 

(i) x + 7 + 4(x – 5)

  • Simplify the expression within the parentheses:
    • x + 7 + 4x – 20
  • Combine like terms:
    • 5x – 13
  • Substitute x = 2:
    • 5(2) – 13 = 10 – 13 = -3

(ii) 3(x + 2) + 5x – 7

  • Simplify the expression within the parentheses:
    • 3x + 6 + 5x – 7
  • Combine like terms:
    • 8x – 1
  • Substitute x = 2:
    • 8(2) – 1 = 16 – 1 = 15

(iii) 6x + 5(x – 2)

  • Simplify the expression within the parentheses:
    • 6x + 5x – 10
  • Combine like terms:
    • 11x – 10
  • Substitute x = 2:
    • 11(2) – 10 = 22 – 10 = 12

(iv) 4(2x – 1) + 3x + 11

  • Simplify the expression within the parentheses:
    • 8x – 4 + 3x + 11
  • Combine like terms:
    • 11x + 7
  • Substitute x = 2:
    • 11(2) + 7 = 22 + 7 = 29

7. Simplify these expressions and find their values if x = 3, a = -1, b = -2.

(i) 3x – 5 – x + 9

(ii) 2 – 8x + 4x + 4

(iii) 3a + 5 – 8a + 1

(iv) 10 – 3b – 4 – 55

(v) 2a – 2b – 4 – 5 + a

Ans : 

(i) 3x – 5 – x + 9

Combine like terms:

  • 2x + 4 Substitute x = 3:
  • 2(3) + 4 = 6 + 4 = 10

(ii) 2 – 8x + 4x + 4

Combine like terms:

  • -4x + 6 Substitute x = 3:
  • -4(3) + 6 = -12 + 6 = -6

(iii) 3a + 5 – 8a + 1

Combine like terms:

  • -5a + 6 Substitute a = -1:
  • -5(-1) + 6 = 5 + 6 = 11

(iv) 10 – 3b – 4 – 5

Combine like terms:

  • -3b + 1 Substitute b = -2:
  • -3(-2) + 1 = 6 + 1 = 7

(v) 2a – 2b – 4 – 5 + a

Combine like terms:

  • 3a – 2b – 9 Substitute a = -1 and b = -2:
  • 3(-1) – 2(-2) – 9 = -3 + 4 – 9 = -8

8. (i) If z = 10, find the value of z2 – 3(z – 10).

(ii) If p = -10, find the value of p2 -2p – 100.

Ans :

Let’s substitute the given values and solve the expressions.

(i) If z = 10, find the value of z² – 3(z – 10)

  • Substitute z with 10:
    • 10² – 3(10 – 10)
    • 100 – 3(0)
    • 100 – 0
    • 100

(ii) If p = -10

 p² – 2p – 100

  • Substitute p with -10:
    • (-10)² – 2(-10) – 100
    • 100 + 20 – 100
    • 20

9. What should be the value of a if the value of 2x2 + x – a equals to 5, when x = 0?

Ans : 

We have the expression: 2x² + x – a

The value of the expression is 5 when x = 0.

We need to find the value of ‘a’.

Solution:

Substitute x = 0 into the expression:

  • 2(0)² + (0) – a = 5
  • 0 + 0 – a = 5
  • -a = 5

To find the value of ‘a’, we multiply both sides by -1:

  • a = -5

Therefore, the value of ‘a’ is -5.

10. Simplify the expression and find its value when a = 5 and b = -3.

2(a2 + ab) + 3 – ab

Ans : 

Let’s simplify the expression and find its value.

Simplifying the expression

  • 2(a² + ab) + 3 – ab
  • Distribute the 2:
    • 2a² + 2ab + 3 – ab
  • Combine like terms:
    • 2a² + ab + 3

Finding the value when a = 5 and b = -3

Substitute a = 5 and b = -3 into the simplified expression:

  • 2(5)² + (5)(-3) + 3
  • 2(25) – 15 + 3
  • 50 – 15 + 3
  • 38

Therefore, the simplified expression is 2a² + ab + 3, and its value when a = 5 and b = -3 is 38.

- Advertisement -spot_imgspot_img
Dr. Upendra Kant Chaubey
Dr. Upendra Kant Chaubeyhttps://education85.com
Dr. Upendra Kant Chaubey, An exceptionally qualified educator, holds both a Master's and Ph.D. With a rich academic background, he brings extensive knowledge and expertise to the classroom, ensuring a rewarding and impactful learning experience for students.
Latest news
- Advertisement -spot_img
Related news
- Advertisement -spot_imgspot_img